Segregated Solver Memo

Weston Ortiz

March 2, 2022

Contents
1 Introduction
2 Implementation of Decoupled equations

2.1 General Decoupling in Goma, . . . . . . . . . ... .
2.1.1  Steady state . . . . . ..o
2.1.2  March to steady state and transient problems . . . . . .. .. ...

Test problems

3.1 General segregated implementation . . . . . . .. .. ... 0L
3.1.1 MilliFluidic Proppant Suspension . . . . . . . .. ..
3.1.2 Drop in a constriction . . . ... .. ... ... ...

Running segregated problems

4.0.1 General segregated support . . . ... ... ... ..
4.1 Required modifications to input files . . . . ... ... ...
4.1.1 Solver specifications . . . . .. ... .. ... ....
4.1.2 Boundary conditions . . . . ... ... ... ... ..
4.1.3 Handling materials and equations . . . . . . . .. ..

Current Limitations
Developer Notes

Segregated die swell tutorial

B.1 Introduction . . . . . . . .. .. ... 0L
B.2 Input file specifics . . . . . .. ..o

B.2.1 Time integration specifications . . . ... ... ...
B.3 Solver specifications . . . . . . ... ... ... ...
B.4 Boundary Conditions . . . . . . .. .. ... ... ... ...
B.5 Material and equations specifications . . . . . . ... .. ..
B.6 Running the die swell problems . . . ... .. ... ... ..
B.7 Notable changes in goma output . . . ... ... ... ...
B.8 Using separate solvers for each matrix . . . . ... ... ..

B.8.1 Extrainputfiles . .. ... ... ... ... ...

B.8.2 Input file changes to use simple and multiple solvers

C Full Segregated example input file

10

11
11
11
11
11
12
12
13
14
15
15
17

20



1 Introduction

This document attempts to explain our implementation of decoupled (or segregated) methods in
Goma. We implement two main methods of decoupling, the Characteristic Based Split (CBS) and a
general decoupled method. Timing and verification results are shown for each method. Overall the
CBS method proved to have easy matrix systems to solve but we were not able to achieve results for
flow through problems. For the more general segregated methods we have promising results when
no mesh motion is involved. In addition to describing our method and results this document also
includes a tutorial for the general segregated method in Appendix B.

2 Implementation of Decoupled equations

In order to implement the segregated solver in Goma we needed to provide a way to decouple
equations which up until now have been implemented as Fully Coupled when enabled. To allow for
decoupled equations we needed to modify Goma in order to store multiple matrix systems for each
set of decoupled equations and allow for information to be passed between matrix systems. Our
implementation allows us to use field variables in Goma to transfer information between decoupled
systems.

2.1 General Decoupling in Goma

To implement a more general segregated method in Goma we allowed any equation to be decoupled.
To do this we created a system similar to our CBS split in which we solve decoupled matrices in a
series of steps (within a time step). Values from previous steps are passed to the next through field
variables which are used in assembling the Residual. However for it to be decoupled we then ignore
all cross terms in the Jacobian from other steps.

Momentum, Gradient Stress
continuity, and mesh |—J —
u,p,d G T

Figure 1: Decoupled systems illustration

Figure 1 shows an example of how a typical viscoelastic problem might be split. Our first
matrix system consists of solving for momentum, continuity, and mesh using either the initial guess
for gradient and stress terms at the first time step or using the previous time step values if we
are not at the first time step. Then we solve for the gradient using the results from the previous
step (and stress from past steps if required). Finally we solve for stress using the newly calculated
gradient, momentum, continuity, and mesh from the previous two steps.

2.1.1 Steady state

We attempted to solve problems in a steady state fashion without time stepping by continuously
iterating over steps until the $L2$-norm of the change in the solution vector was small. However



this only seemed to work for simpler problems and in general the problem diverged as iteration
continued.

2.1.2 March to steady state and transient problems

Instead of the finicky steady state iteration we employ a march to steady state for segregated steady
state problems. Since our decoupled method does not work well without using time stepping we
approach steady state problems as transient problems when we decouple them. The problem is
setup the same as a transient problem and the only difference here is that we add a check to stop
solving when we reach a steady state. We use the same criteria as mentioned above: we take the
$L2$-norm of the change in all solution vectors and when that is small we consider our problem to
have reached a steady state.

3 Test problems

3.1 General segregated implementation

3.1.1 MilliFluidic Proppant Suspension

Figure Removed

Figure 2: Millifluidic proppant experimental results.

Our large test problem for our general segregated method was a millifluidic proppant suspension
which was modeled after experimental results. The MilliFluidic experiment was done to understand
branching flow for proppant transport. This multiphysics problem includes species transport and
viscoelastic flow (PTT).

In Goma, we decoupled as follows:

ou

Pl +uVul = V- {ui(e(u) =G = G") + 0} + Vp=0 (1)
V-u=0
o _
S tuVo+V.J=0 (2)



A% Vo — (1= G oy o1 G)
ot 2 (4)
+§(01 GT 4+ G- 01)] 4 oreMr@)/m (G +GT) =0

Where each set of equations (1, 2, 3, 4) represents a decoupled matrix. For this problem we
used a 3D mesh with 47,416 Hex27 elements and 430, 335 nodes (Figure 3). Momentum and species
equations were run with Q2 interpolation while stress, continuity, gradient, and shear rate were run
with Q1 interpolation.

Figure Removed

Figure 3: Millifluidic proppant mesh with 47,416 Hex27 elements and 430, 335 nodes.

Figure Removed

Figure 4: Millifluidic proppant simulation results showing the concentration of species in branches
at times near 0, 45 and 90 seconds.

Timings comparing newton iterations can be seen in Table 1. From these timings we can see
that per newton iteration the segregated solver has a 5 times speedup (140 seconds for segregated
vs 700 seconds for fully coupled). However in actual run time terms our decoupled run was able
to reach 900 time steps in the same time the fully coupled only reached 100 time steps completed.
The results from the fully coupled and segregated runs matched well and as can be seen in Figure
4 performed similarly to the experiment.



Table 1: Timing results from the millifluidic proppant experiment. Timings are representative
from newton iterations after the problem had begun to develop. Matrix timings are for individual
decoupled matrices (equations 1, 2, 3, and 4)

Assembly (sec) | Solve (sec) | Total (sec)
Matrix 1 32 70 102
Matrix 2 7 1 8
Matrix 3 16 2 18
Matrix 4 11 2 13
Decoupled Total 66 75 141
Fully Coupled 300 400 700

3.1.2 Drop in a constriction

u

9
o=T

(y) -
(y) A v=0

Figure 5: Diagram of drop in constriction with labeled boundary conditions

Our final test problem involved introducing mesh equations into the segregated process. We chose an
axisymmetric 2D viscoelastic problem which is diagrammed in Figure 5. This problem consists of a
Newtonian drop in PTT suspending fluid. It is a moving mesh problem with a capillary free-surface
around the drop that as the drop progresses requires remeshing to progress. The mesh consists of
36,871 nodes and as reported from Goma we have 213,205 unknowns.

To decouple this problem we separated systems in a similar way to the millifluidic problem. We
tried two separate methods of decoupling. Method 1 can be seen in Figure 6, in this method we
decouple mesh into its own matrix system. Method 2 can be seen in Figure 7, in this method mesh
is coupled with momentum and continuity.

Momentum and .
r nt tr
continuity —» Gradie —> Stress
u,p G T
Mesh
d

Figure 6: Method 1 decoupling mesh from momentum and continuity. Each box represents a
separate matrix system



Momentum, Gradient Stress
continuity, and mesh —J»- —

u,p,d G T

Figure 7: Method 2 coupling mesh with momentum and continuity. Each box represents a decou-
pled matrix system.

All versions of the problem start from the same starting state (Figure 8). Method 1 was able to
reach the beginning of the constriction but was not able to pass through the constriction (Figure
9) due to failure to converge. Method 2 was able to make it partially through the constriction
before failure to converge (Figure 10). From the final states in figures 9 and 10 we can see that the
mesh coupled with momentum and continuity was able to progress further without issue. From the
runs of each method it should also be noted that when mesh was not coupled with momentum and
continuity (Method 1) the amount of remeshes needed to progress in the problem increased greatly.

W

Figure 8: Start state of drop.

— a1

Figure 9: Final state of Method 1 before failure to converge.

W

Figure 10: Final state of Method 2 before failure to converge.

From table 2 we can see that for method 2 and fully coupled the total runtime for a problem
is very similar and the segregated version with coupled mesh, momentum, and continuity does not
provide any real benefit over running the problem as fully coupled. This is because in Method 2 the
coupled matrix takes the majority of the time to solve as it is composed of Q2 momentum and Q2
mesh while other matrices are only composed of Q1 elements, so the majority of the time is spent
in solving the coupled difficult to solve matrix.

Table 2: Runtime of decoupled versions vs fully coupled version of drop in a constriction.

Simulation time (s) Method 1 (hours Method 2 (hours) Fully coupled (hours)

0-50 32.7 40.1
50-95 254 28.8
Full 0-95 08.1 68.9




4 Running segregated problems

4.0.1 General segregated support

We were not able to easily support segregation of all equations and boundary conditions in Goma
as it requires developer intervention to enable support (See Appendix A, Developer Notes).
Equations that were explicitly supported in the general segregated method in goma:

e Momentum

Continuity

Gradient

Stress

Mesh (ALE only)
Boundary conditions that were explicitly supported:

o Kinematic
e Capillary
e Dirichlet

e Generalized Dirichlet

Other boundary conditions may work but need to be verified by ensuring that residual contri-
butions are being used from other matrices.

To add support for more equations and boundary conditions see the Developer Notes (Appendix
A).

4.1 Required modifications to input files

Under solver specifications a total number of matrices must be specified.

Total Number of Matrices =4

Then under each material you must specify the number of matrices for that material (for CBS
only one material is allowed and 4 matrices must be used).

Number of Materials =1

MAT = liquid 1
Coordinate System = CARTESIAN
Element Mapping = isoparametric
Mesh Motion = ARBITRARY
Number of bulk species = 0
Number of Matrices = 4

Then for each matrix under a material a 1-indexed number is specified and the equations/options
for that matrix.



MATRIX = 1
Number of EQ = 5

EQ = momentuml Q2 Ul Q2 1. 1. 1 1. 0. 0.
EQ = momentum2 Q2 U2 Q2 1. 1. 1 1. 0. 0.
EQ = continuity P1 P P1 1. 0.
EQ = meshl Q2 D1 Q2 0. 0. 1. 1 0. 0.
EQ = mesh2 Q2 D2 Q2 0. 0. 1. 1 0. 0.

1. Transient march to steady state.

Transient march to steady state still uses Time integration = steady and the previously de-
scribed Steady State Tolerance. Instead of using Maximum steady state steps marching
uses the Maximum number of time steps card as a normal problem would. To declare that a
problem should be marched to steady state rather than iterated a new card should be created
after Steady State Tolerance:

e March to Steady State = yes

This will behave similar to a transient problem except that it will check for the steady state
convergence at each step.

4.1.1 Solver specifications

As mentioned before the total number of matrices in the problem must be specified in solver speci-
fications.

Total Number of Matrices =4

4.1.2 Boundary conditions

Boundary conditions for segregated solves are specified in the same manner as normal solves. Care
should be taken to only use supported boundary conditions in Section 4.0.1 or verify that a boundary
condition is properly modified for segregated support before use.

4.1.3 Handling materials and equations

1. Multiple materials

Multiple materials are specified in input file in the normal way except that now there is a
requirement for each material in the input file to specify the number of matrices which will
be declared on that material. A full example of a multi-material problem can be found in
Appendix C. For each material matrix indices correspond to the global system, so matrix 1
on material 1 is also matrix 1 on material 2.

It is expected that if equations are found in multiple materials then the matrices for those
equations will match across materials (e.g. if momentum and continuity are in matrix 2 for
material 1 then if material 2 also is solving for momentum and continuity those equations
must exist in matrix 2). This is not strictly enforced when reading the input so care must be
taken here.

2. Time step control option

Disable time step control = yes is used to avoid running predict solution on an irrelevant
matrix (e.g. G):



MATRIX = 2
Disable time step control = yes
Number of EQ = 5

EQ = gradientll Q1 Gl1 Q1 1 1
EQ = gradientl2 Q1 G12 Q1 1 1
EQ = gradient2l Q1 G21 Q1 1 1
EQ = gradient22 Q1 G22 Q1 1 1
EQ = gradient33 Q1 G33 Q1 1 1

3. Per matrix solvers
Per matrix solver support is very limited and must use stratimikos input files.
Under solver specifications Solution Algorithm = stratimikos is specified.

Then under each matrix equation declaration (similar to the time step control) a stratimikos
file is specified:
MATRIX = 1

Stratimikos File = teko.xml
Number of EQ = 3

EQ = momentuml Q2 Ul Q2 1. 1. 1. 1. 0. 0.

EQ = momentum2 Q2 u2 Q2 1. 1. 1. 1. 0. 0

EQ = continuity Q2_D P Q2_D 1. 0.
MATRIX = 2

Disable time step control = yes
Stratimikos File = mumps.xml
Number of EQ = 5

EQ = gradientll Q1 G11 Q1 1 1
EQ = gradientl2 Q1 G12 Q1 1 1
EQ = gradient2l Q1 G21 Q1 1 1
EQ = gradient22 Q1 G22 Q1 1 1
EQ = gradient33 Q1 G33 Q1 1 1

5 Current Limitations

The majority of testing has been done on 2D problems with a focus on Oldroyd-B viscoelastic
problems.

Segregated works reasonably well so long as mesh and momentum and continuity are tied to-
gether. Less so when mesh is solved segregated.

Few boundary conditions and equations have been checked and modified for support in the
segregated solver. So manual intervention is required to run many problems.

Bugs have been hard to find and there may be more global variables that contain information
that should be separated by system but are not.

Segregated solves only support basic transient and steady state solves. Continuation and Aug-
menting conditions have not been supported. Many post processing functions have not been checked
for support as well.



A Developer Notes
A new structure was added to store information about the global matrices

struct Problem_Graph
{

int imtrx; /* Current active matrix index x/

/* Temporarily make some things global */
struct Matrix_Data *matrices;

int time_step_control_disabled [MAX_NUM_MATRICES];
b

With this structure a new corresponding global was added, pg.
Where matrices contains data for each matrix system in the problem and can be accessed through
the pg global:

struct Matrix_Data {
struct Aztec_Linear_Solver_System x*ams;

double x*Xx; /* Solution vector x/

double *x_old; /* Solution vector , previous last time step */
double *x_older; /* Solution vector , previous prev time step */
double *xdot; /* xdot of current solution */
double *xdot_old; /* xdot_old of current solution */
double *x_update; /* last update vector x/

double *resid_vector; /* Residual vector */

double *scale;

};

Many structures were also changed to accommodate additional matrices. A full list is not
available but a grep for imtrx should give you an idea of the scope.

The most important changes for updating equations and boundary conditions are:

pd->v, pd->e, pd->etm, upd->vp, upd->ep, and ei all now have an index for which matrix they
correspond to. Many more arrays and structures were also changed to have an additional index
corresponding to a matrix system.

In addition a two new arrays were added to check if an equation is present in any matrix system.
pd->gv which is used in a similar manner to pd->v (but is a global check), and pd->mi which will
return the corresponding matrix index for a given equation and -1 if it is not present in the problem.

pg->imtrx is a global set to the current global matrix begin solved.

To update boundary conditions and assemble functions, we update all relevant subroutines
to use pd->gv for the residual contributions and keep the traditional pd->v access for Jacobian
contributions. This ensures that our Jacobian contributions are only from other equations in the
same matrix, while other equations outside that matrix system still contribute to the residual.

Special care should be taken here to make sure that any values used in the residual contributions
that come from subroutines also used the proper pd->gv checks.

All field variables for active equations in all matrices, see pd->gv, are loaded at each Gauss point
step.

10



B Segregated die swell tutorial

B.1 Introduction

This tutorial presents running a simple die swell problem with a march to steady state for both
fully coupled and segregated solves.

pinned node Capillary and Free Surface
Plane BC,u =0,v=0 dx=dy=0
Plane BC, \ .
u = Parabolic inflow :
with max of 1 D
v=20 T : Plane BC

Axisymmetric, Plane BC, v = 0

Figure 11: Diagram of simple die swell problem

B.2 Input file specifics

Some specific changes to the input file should be noted from running a regular transient goma
problem.

B.2.1 Time integration specifications

Time integration is setup as a transient problem when marching to steady state so cards such as
delta_t and Maximum number of time steps are required. For both segregated and fully coupled
we add a steady state tolerance and a flag to enable marching to steady state. One notable behavior
change for march to steady state is that all timesteps are saved to the exodus file so printing
frequency is used. Listing 1 shows the tolerance and march to steady state specifications.

Listing 1: Flags to indicate a march to steady state, indicated in bold

Time integration = transient

delta_t = 1.0e-3

Maximum number of time steps = 1000

Maximum time = 50.0e+0

Minimum time step = 1.0e-6

Maximum time step = 0.5

Time step parameter = 0.

Time step error = -.001 O 1 1 1 1 111
Printing Frequency =1

Steady State Tolerance = le-6
March to Steady State = yes

B.3 Solver specifications

The only difference for solver specifications is that for the segregated solve we specify the total
number of matrices in the problem (as seen in Listing 2).

11



Listing 2: Segregated solver specifications for die swell.

Total Number of Matrices = 2

Solution Algorithm = amesos
Amesos Solver Package = superlu
Number of Newton Iterations = 10
Newton correction factor =1
Normalized Residual Tolerance = 1.0e-10

B.4 Boundary Conditions

Boundary conditions are setup normally from Figure 11. Note that there is no difference between
segregated and fully-coupled boundary condition specifications.

Listing 3: Boundary condition specifications for die swell.

Number of BC = -1

# inlet

BC =V NS 1O0.

BC = PLANE SS'1 1. 0. 0. 0.

BC = GD_LINEAR SS 1 R_MOMENTUM1 O VELOCITY1 0 0. -1.

BC = GD_PARAB SS 1 R_MOMENTUM1 © MESH_POSITION2 0 1. 0. -1.

# Bottom plane
BC = PLANE SS 2 0. 1. 0. 0.
BC =V NS 2 0.

# Top, plane

BC = PLANE SS 5 0. 1. 0. -1
BC = U NS 5 0.

BC = V NS 5 0.

# Top, free surface
BC = KINEMATIC SS 4 0.
BC = CAPILLARY SS 4 1.0 0. 0.

# Pinned node
BC = DX NS 100 0.
BC = DY NS 100 0.

# right side
BC = PLANE SS 3 1. 0. 0. -7.

END OF BC

B.5 Material and equations specifications

This section contains the major change for segregated problems. We still specify equations under
materials but for segregated problems we also have to specify what matrix system a set of equations
belongs to.

12



Illustrated in the change from Listing 4 to Listing 5, 2 matrices are used to solve this problem.
We create a matrix 1 for solving momentum and continuity in 5 where we specify the number of
equations for that matrix then list equations as normal. Then we specify the matrix 2 with mesh
equations. Another note is that for matrix 2 we disable time step control so that matrix 2 does not
contribute to the size of our At.

Take note that we specify the number of matrices for each material as materials may not always
contain all matrices. Listing 5 illustrates the differences with segregated specific changes marked in
bold. This is in comparison with Listing 4 for a fully coupled problem.

Listing 4: Fully coupled material and equation specification

Number of Materials =1

MAT = coating_liq 1
Coordinate System = CYLINDRICAL
Element Mapping = isoparametric
Mesh Motion = ARBITRARY
Number of bulk species = 0

Number of EQ =5

EQ = momentuml Q2 Ul Q2 0. 1. 1. 1. 0. 0.
EQ = momentum2 Q2 U2 Q2 0. 1. 1. 1. 0. 0.
EQ = continuity Q1 P Q1 1. 0.

EQ = meshl Q2 D1 Q2 0. 0. 1. 1. 0.

EQ = mesh2 Q2 D2 Q2 0. 0. 1. 1. 0.

Listing 5: Segregated material and equation specification, segregated specifics are marked in bold

Number of Materials =1

MAT = coating_liq 1
Coordinate System = CYLINDRICAL
Element Mapping = isoparametric
Mesh Motion = ARBITRARY
Number of bulk species = 0

Number of Matrices = 2

MATRIX = 1

Number of EQ = 3

EQ = momentuml Q2 Ul Q2 0. 1. 1. 1. 0. 0.

EQ = momentum2 Q2 U2 Q2 0. 1. 1. 1. 0. 0

EQ = continuity Q1 P Q1 1. 0.

div ms adv bnd dif src por

MATRIX = 2

Disable time step control = yes

Number of EQ =2

EQ = meshl Q2 D1 Q2 0. 0. 1. 1. 0.

EQ = mesh2 Q2 D2 Q2 0. 0. 1. 1. 0.

B.6 Running the die swell problems

Because we are using march to steady state, both fully coupled and segregated solves are expected
to be ran from the segregated branch on github. This is because march to steady state has not been
implemented on the main branch.

13



Problems are run in the normal way goma -a -i inputfile and the output will look familiar.
In the included files there is a die_swell_fc.inp input file for fully coupled as well as die_swell_seg.inp
input file which contains the changes as described to change the problem into a segregated problem.

B.7 Notable changes in goma output

When running a march to steady state, when there are two time steps available to compare (current
and previous) a new output indicating the change in the solution vector appears:

Delta x 0.00542071

The number indicates L? norm of the difference between the current solution vector and the
previous steps solution vector. This is what is used to check if we have reached our indicated Steady
State Tolerance.

The major change in output comes from a segregated solve. For each time step we now have
multiple newton iterations (depending on the number of matrices). So for our die swell problem
we can see in Listing 6 that there is now an indication for which matrix is being solved (this is 0
indexed differing from the input file which is 1 indexed).

Listing 6: Single time step output for segregated solve.

=> Try for soln at t=0.002 with dt=0.001 [1 for 1] (BE)

SOLVING MATRIX 0

Newton Convergence -Implicit Time Step

ToD itn L_oo L_1 L_2 L_oo L_1 L2 lis asm/slv (sec)
09:50:28 [0] 1.0e+00 1.1e+01 3.0e+00 1.2e+01 2.5e+03 1.1e+02 1 4.0e-01/6.0e-02
09:50:29 [1] 1.3e-04 2.0e-02 9.6e-04 2.2e-01 4.6e+01 2.4e+00 1 4.0e-01/7.0e-02
09:50:29 [2] 1.1e-07 1.5e-05 7.1e-07 8.6e-05 2.7e-02 1.2e-03 1 4.1e-01/6.0e-02
09:50:30 [3] 8.2e-14 1.3e-11 5.0e-13 6.1le-11 1.7e-08 5.4e-10 4.0e-01/6.0e-02
scaled solution norms 1.268719e+01 5.867433e-01 1.770073e+00

=

=> Try for soln at t=0.002 with dt=0.001 [1 for 1] (BE)

SOLVING MATRIX 1

Newton Convergence -Implicit Time Step

ToD itn L_oo L_1 L_2 L_oo L_1 L2 lis asm/slv (sec)

09:50:30 [0] 2.1e-07 1.0e-06 3.3e-07 3.2e-07 2.1le-05 8.2e-07 1 3.6e-01/5.0e-02
09:50:31 [1] 1.3e-11 7.8e-11 2.0e-11 7.0e-11 2.1e-08 5.6e-10 1 3.5e-01/5.0e-02
scaled solution norms 1.309076e-04 8.193678e-06 1.612681e-05

CONSTANT DELTA_T [, 2.3e-01, 7.8e-02]
Predictor-corrector norm: [, v , 1P ]

Maximum Delta x 0.182505

14



B.8 Using separate solvers for each matrix

Now that we have covered changes needed to run a segregated die swell problem we can use another
feature of segregated solves: separate solvers for each system. To accomplish this we need to compile
segregated Goma with Stratimikos and Teko support (Teko for using block based preconditioners).
This can be done by adding HAVE_STRATIMIKOS and HAVE_TEKO to the defines in the settings.mk
file:

DEFINES = -Dlinux \
-DCOMPILER_64BIT \
-DENABLE_AMESOS \
-DTRILINOS \
-DCHECK_FINITE\
-DNO_CHEBYSHEV_PLEASE \
-DMDE=27 \
-DMAX_PROB_VAR=15 \
-DMAX_EXTERNAL_FIELD=4 \
-DMAX_CONC=4 \
-DCOUPLED_FILL \
-DPARALLEL \
-DEIGEN_SERIAL \
-DHAVE_STRATIMIKOS \
-DHAVE_TEKO

B.8.1 Extra input files

To run with separate solvers we need to use Stratimikos input files which are specified in XML. Ex-
amples can be found under the trilinos Stratimikos and teko packages source and further parameters
can be found from Stratimikos documentation at Trilinos documentation.

We first create a generic GMRES with ILUT and fill factor 3 Stratimikos xml file (gmres.ilut.3.xml):

<ParameterList>
<Parameter name="Linear Solver Type" type="string" value="Aztec00"/>
<ParameterList name="Linear Solver Types">
<ParameterList name="Aztec00">
<ParameterList name="Forward Solve">
<ParameterList name="Aztec00 Settings">
<Parameter name="Aztec Solver" type="string" value="GMRES"/>
<Parameter name="Convergence Test" type="string" value="r0"/>
<Parameter name="Size of Krylov Subspace" type="int" value="300"/>
</ParameterList>
<Parameter name="Max Iterations" type="int" value="400"/>
<Parameter name="Tolerance" type="double" value="le-13"/>
</ParameterList>
</ParameterList>
</ParameterList>
<Parameter name="Preconditioner Type" type="string" value="Ifpack"/>
<ParameterList name="Preconditioner Types">
<ParameterList name="Ifpack">
<Parameter name="Prec Type" type="string" value="ILU"/>
<Parameter name="Overlap" type="int" value="1"/>
<ParameterList name="Ifpack Settings">
<Parameter name="fact: level-of-fill" type="int" value="3"/>
</ParameterList>
</ParameterList>
</ParameterList>
</ParameterList>

15



Next we create a file for the SIMPLE preconditioner with GMRES as the solver (simple

<ParameterList name="Stratimikos">

<Parameter name="Linear Solver Type" type="string" value="Aztec00"/>
<Parameter name="Preconditioner Type" type="string" value="Teko"/>

<ParameterList name="Linear Solver Types">
<ParameterList name="Aztec00">
<ParameterList name="Forward Solve">
<ParameterList name="Aztec00 Settings">
<Parameter name="Aztec Solver" type="string" value="GMRES"/>
<Parameter name="Convergence Test" type="string" value="r0"/>
<Parameter name="Size of Krylov Subspace" type="int" value="1000"/>
<Parameter name="Output Frequency" type="int" value="10"/>
</ParameterList>
<Parameter name="Max Iterations" type="int" value="1000"/>
<Parameter name="Tolerance" type="double" value="le-5"/>
</ParameterList>
</ParameterList>
</ParameterList>
<ParameterList name="Preconditioner Types">

<ParameterList name="Teko">
<Parameter name="Strided Blocking" type="string" value="2 1"/>
<Parameter name="Inverse Type" type="string" value="SIMPLE"/>

<ParameterList name="Inverse Factory Library">

<ParameterList name="SIMPLE">
<Parameter name="Type" type="string" value="NS SIMPLE"/>
<Parameter name="Inverse Velocity Type" type="string" value="ML-Velocity"/>
<Parameter name="Inverse Pressure Type" type="string" value="ML-Pressure"/>
</ParameterList>

<ParameterList name="ML-Pressure">
<Parameter name="Type" type="string" value="ML"/>
<Parameter name="Base Method Defaults" type="string" value="SA"/>
<ParameterList name="ML Settings">
<Parameter name="PDE equations" type="int" value="1"/>
<Parameter name="max levels" type="int" value="2"/>
<Parameter name="cycle applications" type="int" value="1"/>
<Parameter name="aggregation: type" type="string" value="Uncoupled"/>
<Parameter name="smoother: type" type="string" value="Gauss-Seidel"/>
<Parameter name="smoother: pre or post" type="string" value="both"/>
<Parameter name="smoother: sweeps" type="int" value="2"/>
<Parameter name="coarse: type" type="string" value="Amesos-KLU"/>
</ParameterList>
</ParameterList>

<ParameterList name="ML-Velocity">

<Parameter name="Type" type="string" value="ML"/>

<Parameter name="Base Method Defaults" type="string" value="SA"/>

<ParameterList name="ML Settings">
<Parameter name="PDE equations" type="int" value="2"/>
<Parameter name="max levels" type="int" value="2"/>
<Parameter name="cycle applications" type="int" value="1"/>
<Parameter name="aggregation: type" type="string" value="Uncoupled"/>
<Parameter name="smoother: type" type="string" value="Gauss-Seidel"/>

16

.xml):



<Parameter name="smoother: pre or post" type="string" value="both"/>
<Parameter name="smoother: sweeps" type="int" value="2"/>
<Parameter name="coarse: type" type="string" value="Amesos-KLU"/>
</ParameterList>
</ParameterList>

</ParameterList> <!-- End "Inverse Factory Library -->
</ParameterList>
</ParameterList>
</ParameterList>

B.8.2 Input file changes to use simple and multiple solvers

In order to use multiple solvers we must set the solution algorithm to Stratimikos as this is the only
supported way to run multiple solvers. Because we are using Stratimikos the matrix storage format
must also be set to epetra. Finally we must as PSPP pressure stabilization so that we can use the
SIMPLE preconditioner.

Total Number of Matrices = 2

Solution Algorithm = stratimikos

Matrix storage format = epetra

Number of Newton Iterations 10
Newton correction factor =1
Normalized Residual Tolerance 1.0e-10
Pressure Stabilization = pspp

Pressure Stabilization Scaling = 1

Next under each matrix we indicate a Stratimikos file for that matrix to use, we will use the two
previously created xml files: simple.xml and gmres.ilut.3.xml. For the momentum and continuity
matrices we change this to both be equal order Q2 elements so that simple’s block preconditioner
matches and we use the simple XML file. For the mesh matrices we use the GMRES with ILUT
XML file.

MAT = coating_liq 1
Coordinate System = CYLINDRICAL
Element Mapping = isoparametric
Mesh Motion = ARBITRARY
Number of bulk species = 0

Number of Matrices = 2

MATRIX = 1
Stratimikos File = simple.xml
Number of EQ =13
EQ = momentuml Q2 Ul Q2 0. 1. 1. 1. 0. 0.
EQ = momentum2 Q2 U2 Q2 0. 1. 1. 1. 0. 0.
EQ = continuity Q2 P Q2 1. 0.

div. ms adv bnd dif src por

17



MATRIX = 2
Disable time step control = yes
Stratimikos File = gmres.ilut.3.xml

Number of EQ =2
EQ = meshl Q2 D1 Q2 0. 0. 1. 1. 0.
EQ = mesh2 Q2 D2 Q2 0. 0. 1. 1. 0.

Now that Stratimikos input files have been added to the input file we can now run segregated
goma with separate solvers. When running you might notice some extra output due to Teko com-
piling with debugging turned on by default (see Listing 7).

Listing 7: First time step for die swell with two solvers.
=> Try for soln at t=0.001 with dt=0.001 [0 for 0] (BE)

SOLVING MATRIX 0

Newton Convergence -Implicit Time Step

ToD itn L_oo L1 L2 L_oo L1 L.2 1lis asm/slv (sec)
08:25:29 [0] WARNING: mm_fill_util.c:158: The beer_belly for multiple matrices might have issues.
1.0e+00 1.1le+01 3.0e+00 Teko: Inverse "SIMPLE" is of type strat prec = 0, strat solv = 0, block
— prec =1
Teko: Begin debug MSG
Looked up "NS SIMPLE"
Built Teuchos::RCP<Teko::PreconditionerFactory>{ptr=0x5c38f78,node=0x5be6180,strong_count
— =1,weak_count=0}
Teko: End debug MSG
Teko: Begin debug MSG
SIMPLE Parameters:

inv type = "
inv v type = "ML-Velocity"
inv p type = "ML-Pressure"
alpha =1
use mass =0

vel scaling = Diagonal
SIMPLE Parameter list:
Inverse Velocity Type = ML-Velocity
Inverse Pressure Type = ML-Pressure
Teko: End debug MSG
Teko: Inverse "ML-Velocity" is of type strat prec = 1, strat solv = 0, block prec
Teko: Inverse "ML-Pressure" is of type strat prec = 1, strat solv = 0, block prec
1.2e+01 6.7e+03 2.2e+02 42 5.8e-01/2.8e-01
08:25:30 [1] 1.3e-04 2.0e-02 9.5e-04 Teko: Inverse "SIMPLE" is of type strat prec = 0, strat
— solv = 0, block prec =1
Teko: Begin debug MSG
Looked up "NS SIMPLE"
Built Teuchos::RCP<Teko: :PreconditionerFactory>{ptr=0x5bdee68,node=0x5919a70,strong_count
— =1,weak_count=0}
Teko: End debug MSG
Teko: Begin debug MSG
SIMPLE Parameters:

nn
[l o)

inv type = ""
inv v type = "ML-Velocity"
inv p type = "ML-Pressure"
alpha =1
use mass =0

18



vel scaling = Diagonal
SIMPLE Parameter list:
Inverse Velocity Type
Inverse Pressure Type
Teko: End debug MSG

ML-Velocity
ML-Pressure

Teko: Inverse "ML-Velocity" is of type strat prec = 1, strat solv = 0, block prec = 0

Teko: Inverse "ML-Pressure" is of type strat prec = 1, strat solv = 0, block prec = 0
1.7e-01 1.5e+02 4.6e+00 51 4.9e-01/2.1le-01
08:25:31 [2] 9.5e-08 1.4e-05 6.5e-07 Teko: Inverse "SIMPLE" is of type strat prec = 0, strat

— solv = 0, block prec 1
Teko: Begin debug MSG
Looked up "NS SIMPLE"
Built Teuchos::RCP<Teko: :PreconditionerFactory>{ptr=0x5bdcf08,node=0x5915cf0,strong_count
— =1,weak_count=0}
Teko: End debug MSG
Teko: Begin debug MSG

SIMPLE Parameters:

inv type ="
inv v type = "ML-Velocity"
inv p type = "ML-Pressure"
alpha =1
use mass =0
vel scaling = Diagonal
SIMPLE Parameter list:
Inverse Velocity Type = ML-Velocity
Inverse Pressure Type = ML-Pressure

Teko: End debug MSG

Teko: Inverse "ML-Velocity" is of type strat prec = 1, strat solv = 0, block prec = 0

Teko: Inverse "ML-Pressure" is of type strat prec = 1, strat solv = 0, block prec = 0
7.4e-05 6.4e-02 1.9e-03 45 4.1le-01/1.5e-01
08:25:31 [3] 1.5e-12 2.2e-10 6.4e-12 Teko: Inverse "SIMPLE" is of type strat prec = 0, strat

— solv = 0, block prec 1
Teko: Begin debug MSG
Looked up "NS SIMPLE"
Built Teuchos::RCP<Teko: :PreconditionerFactory>{ptr=0x5c26c58,node=0x57305e0,strong_count
— =1,weak_count=0}
Teko: End debug MSG
Teko: Begin debug MSG
SIMPLE Parameters:

inv type = "

inv v type = "ML-Velocity"
inv p type = "ML-Pressure"
alpha =1

use mass =0

vel scaling = Diagonal

SIMPLE Parameter
Inverse Velocity
Inverse Pressure
Teko: End debug MSG

list:
Type
Type

ML-Velocity
ML-Pressure

Teko: Inverse "ML-Velocity" is of type strat prec = 1, strat solv = 0, block prec = 0
Teko: Inverse "ML-Pressure" is of type strat prec = 1, strat solv = 0, block prec = 0
4.9e-10 1.4e-07 3.3e-09 48 4.0e-01/1.6e-01
scaled solution norms 1.231698e+01 1.141057e+00 2.851774e+00
=> Try for soln at t=0.001 with dt=0.001 [0 for 0] (BE)

SOLVING MATRIX 1

19



Newton Convergence -Implicit Time Step

lis asm/slv (sec)

08:25:32 [0] 6.0e-05 6.9e-04 1.6e-04 6.1e-05 1.5e-02 4.9e-04 16 4.0e-01/1.9e-01
08:25:32 [1] 9.6e-08 3.2e-07 1.1e-07 4.0e-07 5.7e-06 4.2e-07 15 3.9e-01/1.3e-01
08:25:33 [2] 1.1e-12 5.9e-12 1.5e-12 6.6e-12 1.4e-09 3.7e-11 17 3.4e-01/1.1le-01
scaled solution norms 6.069561e-05 4.000307e-06 7.931002e-06

CONSTANT DELTA_T [, 2.0e-01, 1.3e-01]
Predictor-corrector norm: [, v , 1P ]

C Full Segregated example input file

This is an example input for Goma for a drop in a constriction problem. It showcases how multiple
materials are handled in the segregated input file.

#{include("params")}

FEM file = mesh.exoIl
Output EXODUS II file = out_rem00.exoII
GUESS file = contin.dat
SOLN file = soln.dat
Write intermediate results = no
General Specifications
Output Level =0
Debug =0

Initial Guess =

Time integration = transient

delta_t = 0.05

Maximum number of time steps = 100

Maximum time = {total_time}
Minimum time step = 5e-06

Maximum time step = {time_step_max}
Time step parameter = 0.5

#Time step error = err=.005 mesh=1 v=1 T=0 (=0 p=0
Time step error =-0.05 06 106101
Initial Time = 0.0296875

Printing Frequency =1

Jacobian quality weight = 0.4

Angle quality weight =0.2

Triangle quality weight = 0.2

Element quality tolerance = 0.2

Element quality tolerance type = wtmin

#Solution Algorithm

20



#Number of Newton Iterations =10

#Newton correction factor =1
#Normalized Residual Tolerance = le-7
#Residual Ratio Tolerance = le-2
Total Number of Matrices =13

Solution Algorithm = amesos
Amesos Solver Package = superlu
#Amesos Solver Package = umf

UMF XDIM = 10330088
UMF IDIM = 10330088
Preconditioner = 1s
Polynomial =1

Size of Krylov subspace = 64
Orthogonalization = classical
Maximum Linear Solve Iterations = 1000
Number of Newton Iterations =15

Newton correction factor =1

#Newton correction factor =1.0 1.0e-6 0.4 1.0e-1 0.1 1.0e+1
Normalized Residual Tolerance = 1.0e-7
#Residual Ratio Tolerance = 1.0e-2

Number of BC = -1

#outlet
BC = PLANE SS 44 1.0 0. 0. -88.

#top

#BC = PLANE SS 11 0. 1.0 0. -3.

BC = GD_LINEAR SS 11 R_MESH_NORMAL © MESH_POSITION2 0 0.0 -1.0

BC = GD_TABLE SS 11 R_MESH_NORMAL 0 MESH_POSITION1 © 1.0 LINEAR FILE=wall.dat

#inlet
BC = PLANE SS 22 1.0 6. 0. 0.0

#bottom
BC = PLANE SS 33 0. 1.0 0. 0.0

# Centerline symmetry condition
BC = VNS 3 0.
# No slip on the solid boundary

#BC = VELO_NORMAL SS 11 0.
#BC = VELO_SLIP SS 11 0.001 0. 0. 0.
BC=UNS1o0.

BC = VNS 10.

# Outflow pressure

$$BC = FLOW_PRESSURE SS 44 0.
#BC = P NS 5 0.

# Inflow velocities and stresses

BC = GD_LINEAR SS 22 R_MOMENTUM1 0 VELOCITY1 0 0. A
BC = GD_PARAB SS 22 R_MOMENTUM1 O MESH_POSITION2 0 {-2/9} 0. {2/81}
BC = VNS 2 0.

# Outflow velocities
$$BC = GD_LINEAR SS 44 R_MOMENTUM1 0 VELOCITY1l 0 0. 1.
$$BC = GD_PARAB SS 44 R_MOMENTUM1 ©@ MESH_POSITION2 0 {-2/9} 0. {2/81}

21



BC = VNS 4 0.

# Inflow second normal stress
BC = S22 NS 2 0

# Inflow first normal stress
BC = GD_LINEAR SS 22 R_STRESS11 0 POLYMER_STRESS11 © 0. 1.
BC = GD_PARAB SS 22 R_STRESS11 © MESH_POSITION2 0 0. 0. {-2*xwex(4/81)"2}

BC = KINEMATIC SS 56 0.
BC = CAPILLARY SS 56 15.38 0. 0. #inverse of capillary number

BC = CA NS 200 1.5707963 0. 1. 0.
BC = CA NS 400 1.5707963 0. 1. 0.
END OF BC

Problem Description

Number of Materials = 2
MAT = ptt 1
Coordinate System = CYLINDRICAL
Element Mapping = isoparametric
Mesh Motion = ARBITRARY

Number of bulk species = 0
Number of viscoelastic modes = 1

Number of Matrices = 3

MATRIX = 1

Number of EQ =5

EQ = momentuml Q2 Ul Q2 1. 1. Wo 1. 0. 0.

EQ = momentum2 Q2 u2 Q2 1. 1. 1. 1. 0. 0.

EQ = continuity P1 P P1 1. 0.

EQ = meshl Q2 D1 Q2 0. 0. 1. 1. 0. 0.

EQ = mesh2 Q2 D2 Q2 0. 0. 1. 1. 0. 0.
MATRIX = 2

Disable time step control = yes

Number of EQ = 5

EQ = gradientll Q1 G11 Q1 1 1

EQ = gradient12 Q1 G12 Q1 1 1

EQ = gradient2l Q1 G21 Q1 1 1

EQ = gradient22 Q1 G22 Q1 1 1

EQ = gradient33 Q1 G33 Q1 1 1
MATRIX = 3

Number of EQ = 4

EQ = stressll Q1 S11 Q1 1. 1. o 1. 1.

22



EQ stressl2 Q1
EQ stress22 Q1
EQ = stress33 Q1

MAT = oil 2

S12
S22
S33

Coordinate System = CYLINDRICAL

Element Mapping
Mesh Motion = ARBITRARY
Number of bulk species =1

Number of Matrices =1

MATRIX = 1
Number of EQ
EQ = momentuml Q2
EQ = momentum2 Q2
EQ = continuity P1
EQ = meshl Q2
EQ = mesh2 Q2

Post Processing Specification

Stream Function = yes
Streamwise normal stress = no
Pressure contours = yes
Second Invarient of Strain =
Mesh Dilatation = no

Navier Stokes Residuals = no
Moving Mesh Residuals = no
Mass Diffusion Vectors = no
Mass Fluxlines = no

Energy Conduction Vectors = n
Energy Fluxlines = no

Time Derivatives = no

Mesh Stress Tensor no

Mesh Strain Tensor = no

S

no

(o]

= isoparametric

Ul
U2

D1
D2

Q1
Q1
Q1

Q2
Q2
P1
Q2
Q2

23

[y

o o
[clNo)

o ©

[l o)



	Introduction
	Implementation of Decoupled equations
	General Decoupling in Goma
	Steady state
	March to steady state and transient problems


	Test problems
	General segregated implementation
	MilliFluidic Proppant Suspension
	Drop in a constriction


	Running segregated problems
	General segregated support
	Required modifications to input files
	Solver specifications
	Boundary conditions
	Handling materials and equations


	Current Limitations
	Developer Notes
	Segregated die swell tutorial
	Introduction
	Input file specifics
	Time integration specifications

	Solver specifications
	Boundary Conditions
	Material and equations specifications
	Running the die swell problems
	Notable changes in goma output
	Using separate solvers for each matrix
	Extra input files
	Input file changes to use simple and multiple solvers


	Full Segregated example input file

